Indoor Semantic Segmentation using depth information

نویسندگان

  • Camille Couprie
  • Clément Farabet
  • Laurent Najman
  • Yann LeCun
چکیده

This work addresses multi-class segmentation of indoor scenes with RGB-D inputs. While this area of research has gained much attention recently, most works still rely on hand-crafted features. In contrast, we apply a multiscale convolutional network to learn features directly from the images and the depth information. We obtain state-of-the-art on the NYU-v2 depth dataset with an accuracy of 64.5%. We illustrate the labeling of indoor scenes in videos sequences that could be processed in real-time using appropriate hardware such as an FPGA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Scale Convolutional Architecture for Semantic Segmentation

Advances in 3D sensing technologies have made the availability of RGB and Depth information easier than earlier which can greatly assist in the semantic segmentation of 2D scenes. There are many works in literature that perform semantic segmentation in such scenes, but few relates to the environment that possesses a high degree of clutter in general e.g. indoor scenes. In this paper, we explore...

متن کامل

Generating an Indoor space routing graph using semantic-geometric method

The development of indoor Location-Based Services faces various challenges that one of which is the method of generating indoor routing graph. Due to the weaknesses of purely geometric methods for generating indoor routing graphs, a semantic-geometric method is proposed to cover the existing gaps in combining the semantic and geometric methods in this study. The proposed method uses the CityGML...

متن کامل

Toward Real-time Indoor Semantic Segmentation Using Depth Information

This work addresses multi-class segmentation of indoor scenes with RGB-D inputs. While this area of research has gained much attention recently, most works still rely on handcrafted features. In contrast, we apply a multiscale convolutional network to learn features directly from the images and the depth information. Using a frame by frame labeling, we obtain nearly state-of-the-art performance...

متن کامل

FuseNet: Incorporating Depth into Semantic Segmentation via Fusion-Based CNN Architecture

In this paper we address the problem of semantic labeling of indoor scenes on RGB-D data. With the availability of RGB-D cameras, it is expected that additional depth measurement will improve the accuracy. Here we investigate a solution how to incorporate complementary depth information into a semantic segmentation framework by making use of convolutional neural networks (CNNs). Recently encode...

متن کامل

Incorporating Depth into both CNN and CRF for Indoor Semantic Segmentation

To improve segmentation performance, a novel neural network architecture (termed DFCN-DCRF) is proposed, which combines an RGB-D fully convolutional neural network (DFCN) with a depth-sensitive fully-connected conditional random field (DCRF). First, a DFCN architecture which fuses depth information into the early layers and applies dilated convolution for later contextual reasoning is designed....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1301.3572  شماره 

صفحات  -

تاریخ انتشار 2013